2018

Time: 3Hrs

Full Marks: 80

Candidates are required to give their answers in their own words as far as practicable. The questions are of equal value.

Answer any five questions in which Q. No. 1 is compulsory.

1. Choose the correct answer from the given alternatives:

(a)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \dots$$

(ii) e^x

(iii) L

- (iv.) None of these
- (b) The domain and range of $f(x) = \sqrt{4 x^2}$ are given by
 - (i) $(-\infty, \infty), [0, 2]$ (ii) $[-2, 2], (0, \infty)$

 - (iii) [-2, 2], [0, 2] (iv) None of these
- (c) If $y = a^x$, then $\frac{dy}{dx} = \dots$
 - (i)/ ax.loga
- (ii) x^a.logx
- (iii) x.ax-1

(iv) None of these

(d)
$$\frac{d}{d(Sinx)} \{e^{tanx}\} =$$

- (i) $e^{tanx}.sec^2x$ (ii)
- Sec³x.e^{tanx}
- (iii) Sec³x.e^{Secx}
- (iv) None of these
- (e) At x = 2, f(x) = [x] is
 - (i) Continuous but not differentiable
 - (ii) Differentiable but not continuous
 - (iii) Continuous as well as differentiable
 - (iv) None of these
- (f) If $x = at^2$, y=2at, then $\frac{dy}{dx} =$
 - $(i) \frac{1}{\cdot}$
- (ii) $-\frac{1}{t^2}$
 - (iii) $\frac{-2}{t}$
- None of these (iv)
- (g) $\int \frac{dx}{a+r^2} =$

 - (i) $tan^{-1}\frac{x}{3} + c$ (ii) $\frac{1}{3}tan^{-1}\frac{x}{3}$

 - (iii) $3tan^{-1}\frac{x}{3} + c$ (iv) None of these
- (h) If $f(x, y) = 2x^2 xy + 2y^2$, then $\frac{\partial t}{\partial n} at(1, 2)$ is

(i) 8

(ii·)

(iii) 14

- None of these (iv)
- 2. Answer any two of the following:

Prove that

(a)
$$\lim_{x \to 0} \left(\frac{\tan x - \sin x}{x^3} \right) = \frac{1}{2}$$

(b)
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log_e a$$

(c)
$$\lim_{x\to 0} \frac{\log(1+x)}{x} = 1$$

3. Answer any two of the following:

(a) If
$$y = \frac{1 + x - 4\sqrt{x}}{x}$$
, find $\frac{dy}{dx}$.

(b) Differentiate: log [log (log x)]

(c) Find
$$\frac{dy}{dx}$$
, when $y = (Cosx)^{Cosx}$

4. Evaluate any two of the following:

(a)
$$\int \frac{dx}{\sqrt{a^2 - x^2}}$$

(b)
$$\int_{0}^{1/4} \sqrt{1 - \sin 2x} \ dx$$

(c)
$$\int \frac{(x-1)}{(x+1)(x-2)} dx$$

BCA(I)-103

- 5. (a) Find the maximum and minimum values of the function $2x^3 21x^2 + 36x 20$
 - (b) Find the maximum value of

$$\frac{x^2 - 2x + 4}{x^2 + 2x + 4}$$

- 6. (a) $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ if $u = \frac{x^2}{a^2} + \frac{y^2}{b^2} 1$
 - (b) Find $\frac{du}{dx}$ if $u = Sin(x^2 + y^2)$ where $a^2x^2 + b^2y^2 = c^2$
 - 7. (a) State and prove Lagrange's interpolation formula.
 - (b) Find first and second derivatives of the function given below at the point x = 1.2

8. (a) Verify Rolle's theorem in the case of the following function:

$$f(x) = 2x^3 + x^2 - 4x - 2$$

- (b) Find the expansion of exusing Taylor Series.
- 9. (a) Find the whole area of the circle $x^2 + y^2 = a^2$
 - (b) Find the length of the arc of the parabola $y^2 = 4ax$ cut off by the line y = 2x.